Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties
نویسندگان
چکیده
Laccases are members of a large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of dioxygen to water. These enzymes contain four Cu atoms per molecule organized into three sites: T1, T2 and T3. In all laccases, the T1 copper ion is coordinated by two histidines and one cysteine in the equatorial plane and is covered by the side chains of hydrophobic residues in the axial positions. The redox potential of the T1 copper ion influences the enzymatic reaction and is determined by the nature of the axial ligands and the structure of the second coordination sphere. In this work, the laccase from the ascomycete Botrytis aclada was studied, which contains conserved Ile491 and nonconserved Leu499 residues in the axial positions. The three-dimensional structures of the wild-type enzyme and the L499M mutant were determined by X-ray crystallography at 1.7 Å resolution. Crystals suitable for X-ray analysis could only be grown after deglycosylation. Both structures did not contain the T2 copper ion. The catalytic properties of the enzyme were characterized and the redox potentials of both enzyme forms were determined: E0 = 720 and 580 mV for the wild-type enzyme and the mutant, respectively. Since the structures of the wild-type and mutant forms are very similar, the change in the redox potential can be related to the L499M mutation in the T1 site of the enzyme.
منابع مشابه
Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada
Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the...
متن کاملEffect of Sr substitution on structural, redox and catalytic properties of nano-particles La1-xSrxMn0.5Co0.5O3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) as a catalyst for CO oxidation
Structural features of La(1-x)SrxMn0.5Co0.5O3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) nano-particles were investigated using X-ray powder diffraction and FT-IR spectroscopy. The characterization of compounds by X-ray powder diffraction and using Fullprof program show a cubic structure (Pm3m space group) for x = 0.0 and a rhombohedra structure (R-3c space group) for the Sr substituted La(1-x)SrxM...
متن کاملSite-directed mutations in fungal laccase: effect on redox potential, activity and pH profile.
A Myceliophthora thermophila laccase and a Rhizoctonia solani laccase were mutated on a pentapeptide segment believed to be near the type-1 Cu site. The mutation L513F in Myceliophthora laccase and the mutation L470F in Rhizoctonia laccase took place at a position corresponding to the type-1 Cu axial methionine (M517) ligand in Zucchini ascorbate oxidase. The triple mutations V509L,S510E,G511A ...
متن کاملThe Effect of Coinage Transition Metal (Cu, Ag, Au) Substitutions on Two-electron Redox Potential of Quinones
Quinones are a class of compounds which have widespread importance in chemistry, biology and medicine. Because of their appropriate performance in electron transferring rate, quinones are among the most applicable mediators in biosensors. Recently, the effects of different non-metal substitutions on redox potential of quinone have been investigated to design suitable mediators for different ele...
متن کاملInsight into stability of CotA laccase from the spore coat of Bacillus subtilis.
The axial ligand of the catalytic mononuclear T1 copper site (Met(502)) of the CotA laccase was replaced by a leucine or phenylalanine residue to increase the redox potential of the enzyme. These mutations led to an increase in the redox potential by approx. 100 mV relative to the wild-type enzyme but the catalytic constant k(cat) in the mutant enzymes was severely compromised. This decrease in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 70 شماره
صفحات -
تاریخ انتشار 2014